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Abstract

A theoretical analysis of gas—liquid counter-current flow in laminar boundary layers with flat phase boundary
based on similarity variables method has been done. The obtained numerical results for the velocity distribution in
both phases are compared with analogous results from asymptotic theory and experimental data. The dissipation
energy in boundary layer is determined and the results corresponding to counter-current and co-current flows are
compared. The comparison shows significant differences in dissipation energy values in gaseous phase. © 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The chemical technologies based on opposite-current
flows in gas—liquid systems are widely distributed in
practice. The theoretical analysis of such flows [1]
demonstrates that there is a possibility to obtain
asymptotic solutions for gas—liquid systems which are
in agreement with the experimental data, obtained
from thermo-anemometrical measurements of the vel-
ocity distribution in boundary layers. The exactness of
the proposed asymptotic method [1] requires to be con-
firmed by numerical experiments.

The experience in exact solution of the problem by
means of numerical simulation [2] shows that it is a
non-classical problem of mathematical physics which is
not sufficiently discussed in literature. A prototype of
such problem is the parabolic boundary value problem
with changing direction of time [3,4]. It was shown [2]
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that this non-classical problem can be described as
consisting of several classical problems. The same
approach will be used in the present work for determi-
nation of velocity distribution in gas—liquid opposite-
current flows with flat phase boundary.

2. Mathematical model

The mathematical description of the opposite-cur-
rent flows (Fig. 1) in approximation of boundary layer
theory has the following form:

ou; T ou; 821/!,' du; + av; 0
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x=0, >0, u =u® x=1 y<0, w=—-us

y—oo, 0<x<l u =uf;

y— —oo, 0<x<l w=—us;
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Nomenclature

u velocity in x direction (m/s)
v velocity y direction (m/s)

x coordinate (m)

y coordinate (m)

Greek symbols
1 dynamic viscosity (N/m s deg)
p density (kg/m®)

v kinematic viscosity (m?%/s)

Subscripts
1 for gas
2 for liquid

Superscript
* for co-current flow

y=0, 0<x</, u =u,

b _ e @
Mlay—ﬂzay, 1=v2=0U

The problem (1) can be presented in dimensionless
form using two different coordinate systems for the
two phases, so that the flow in each phase is oriented
to the longitudinal coordinate, and the following
dimensionless variables and parameters are introduced:

,’CZZXIZI—IXQ, y:51Y1:—52Y2,
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In the new coordinate systems, the model of opposite-
current flows has the following form:
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Fig. 1. Counter-current flow.
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Yi=Y,=0, U =-0Uy 60— =22,

Y Y, 3)
Vi=0;i=1,2.

3. Method of solution

The problem (3) cannot be solved directly, because
the velocities U; (i = 1,2) change their directions in
domains 0<X;<1, 0<Y; <o0, (i=1,2). This non-
classical problem of mathematical physics can be pre-
sented [3] as a classical one after the introduction of
the following similarity variables:

U =fl, Vi= 2\/—(11,1‘ —fi)s fi =fim)s
“4)
— Yi
LN
Substitution of Eq. (4) into Eq. (3) leads to:
oA +1if] =0,
f0)=0, f(oo)=1, i=12,
£100) = =0, £5(0), 92\/7f "(0) = £5(0),
®)

Xi+Xo=1.

It is obvious from Eq. (5) that the problem (3) has no
solution in similarity variables. However, the problem
(5) can be solved after the introduction of new par-
ameter 0, for each X, € 0, 1):
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Numerical results of the boundary conditions

0, =0.1, 0, =0.152

2703

2 1-X
0= 00/ = (©)

v B a b £16) /56
100 0.00000  0.099895 0.3265000 0.998970 0.998950 . o : .
e. th lem has local simil: Jution. In th
0.95  0.03487 —0.097863 0.3268130 0.998971 0.998970 i.e. the problem has local similarity solution. In this
090 005067 —0.096930 0.3269220 0.998973 0.998950 way, the problem (5) is substituted by several separate
0.85 0.06385 —0.096150 0.3270100 0.998971 0.998977 problems for each X; & (0, 1).
0.833 0.06806 —0.095900 0.3270400 0.998974 0.998980 The solutions of these separate problems can be
0.80 0.07600 —0.095410 0.3271000 0.998982 0.998830 obtained after the introduction of the function F:
0.75  0.08776 —0.094718 03271720 0.998972 0.998960
070 0.09951 —0.094000 0.3272520 0.998970 0.998860 T T
0.65 0.11153 —0.093282 0.3273320 0.998974 0.998975 F(“’b):L(fl—l) d’11+L(fz—1) dn,,
0.60 0.12410 —0.092510 0.3274150 0.998970 0.998910
0.55 0.13748 —0.091690 0.3275050 0.998973 0.998929
0.50  0.15200 —0.090800 0.3275980 0.998970 0.998984 a=f10), b=fI0). e
045 0.16804 —0.089800 0.3277050 0.998972 0.998963
0.40 0.18620 —0.088650 0.3278240 0.998971 0.998857 . . .
035 020714 —0.087330 0.3279600 0.998973 0.998916 The solution of Eq. (3) for each X; € (0, 1) is obtained
030 023220 —0.085730 03281200 0.998972 0.998971 after finding the minimum of the function Fa, b),
025 026327 —0.083710 0.3283180 0.998972 0.998976 where at each step of minimization procedure the
0.20  0.30400 —0.080998 0.3285750 0.998973 0.998890 boundary problem has to be solved:
0.167 0.33950 —0.078598 0.3287940 0.998973 0.998967 . ] _ .
0.15 0.36183 —0.077058 0.3289300 0.998972 0.998972 A +fif! =0, fi0)=0, i=1,2,
0.10 045600 —0.070300 0.3294910 0.998970 0.998942
0.05 0.66255 —0.053540 0.3306320 0.998972 0.998919
. . a .
f100) =a, f§(0)=—0—, f10) =b,
1
] ®)
£10) = bsb.
1-
0.8 +
—F1'(x2=0.1)
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Fig. 2. Numerical results of the velocity distribution.
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Fig. 3. Theoretical (asymptotic solution) and experimental vel-
ocity profiles in counter-current flow.

4. Numerical results

The problem (8) was solved numerically for oppo-
site-current gas (1) and liquid (2) flows for the follow-
ing parameters’ values 0; =0.1 and 60, =0.152. In
accordance with the requirement for minimum of
F(a, b) in Eq. (7), the boundary conditions a, b and
F(a, b) were determined. The results obtained for f](6)
and f%(6) are shown in Table 1. Taking into account
that boundary layer theory gives f'(6) = 0.99897 [5],
the obtained results are characterized with sufficient
precision at determination of a, b.

The velocity distribution in the gaseous and liquid
phases are presented in Fig. 2. The boundary
conditions in Eq. (5) show that the velocity at the
interphase boundary becomes zero when X = X %:

flo)=0, i=1,2, 9)

Table 2
Comparison between asymptotic and numerical theory (vel-
ocity distribution)

0, =0.1, 6, =0.152

U/ Y, Us(X2, Y2) f2
X, =0.167
0.00 0.0 0.907672 0.959000
1.22 0.5 0.945604 0.983229
2.45 1.0 0.983392 0.995563
3.67 1.5 0.997511 0.998583
4.89 2.0 0.999821 0.998962
X>=0.5
0.00 0.0 0.910754 0.908000
0.71 0.5 0.941204 0.942042
1.41 1.0 0.966199 0.968796
2.12 1.5 0.983722 0.985933
2.83 2.0 0.993640 0.994414
3.54 2.5 0.998019 0.997703
4.24 3.0 0.999513 0.998693
X, =0.833

0.00 0.0 0.883033 0.785989
0.55 0.5 0.927292 0.846172
1.10 1.0 0.955745 0.899398
1.64 1.5 0.974572 0.940078
2.19 2.0 0.986680 0.968257
2.74 2.5 0.993754 0.984835
3.29 3.0 0.997420 0.993261
3.83 3.5 0.999070 0.996915
therefore:
— 1-Xx9
6, =6, L—1, 10

% (10)

because in order to fulfil the conditions f/(c0) = 1, it is
necessary that

f1(0) = f7(0) = 0.33205. (11)

It follows directly from Eq. (10) that at 6, = 0.152 for
the point where the phase velocity changes its direc-
tion, X is:

X9 =0.02252. (12)
The results from the asymptotic theory [1] present the

velocity change at the boundary layer U,(X3, Y2) and
at the phase boundary U,(X>, 0):

Us(Xa, Vo) =1-0,

s

0.33205 JXZ exp[— Y 3/4(X,—&)]
Voo X2-9(1-9)

0.33205ln 1+ VX2

Uy(X2,0)=1-0, N V5

(13)
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Fig. 4. Theoretical (asymptotic solution) and experimental relationships of surface velocities of the length X at various 6, in coun-

ter-current flow.

They are compared [1] with the experimental data in
FlgS 3 and 4 (I’[ =1, Ug =f1/, X=X, Y=Y,
UL = U2, Us = U2(X2, 0), UEO go’ Ulg: = exper-
imental data) and with the directly calculated results in
Tables 2 and 3, where f/(1,) is a numerical solution of
the problem (5). The comparison shows a good agree-
ment between the asymptotic theory (13) and numerical
solution, taking into account that accuracy of the asymp-
totic theory is about 10-15%. From Tables 2 and 3 and
Figs. 3 and 4, a good agreement between the results of
physical experiments and numerical simulation is seen.

Table 3
Comparison between asymptotic and numerical theory (inter-
phase velocity)

0, =0.1, 6, =0.152

X Ux(X2, Y2) 5

0.1 0.98135 0.96930
0.2 0.97259 0.95410
0.3 0.96496 0.94000
0.4 0.95754 0.92510
0.5 0.94980 0.90800
0.6 0.94124 0.88650
0.7 0.93109 0.85730
0.8 0.91778 0.80998
0.9 0.89643 0.70300

The obtained results show that there is a line, where
the velocity changes its direction in gaseous phase
(Fig. 5).

5. Energy dissipation

The energy dissipated in the laminar boundary layer
[6,7] is described for both phases by the equation:
au,-

[ (=D 2
€i:ll,-LJ0 <3y>

Using dimensionless variables (2), the problem (14)
takes the following form:

(14)

1 oo U 2
E=— b)) dyidx, i=1,2, 15
.‘o L <3 Yi) : (1)
where
e; (U Locl)/l),
=—— i=12. (16)
vip;U
The introduction of similarity variables leads to:
1 00 ’
Ei:J [J f7 )dn,} dx;,, i=1,2. a7
o vXiLJo
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Fig. 5. Zero velocity line.

Table 4
Comparison between the energy dissipation for co-current
and counter-current two-phase flows

Gas Liquid

01 =—0.1, 0, = 0, = 0.152 E7=0.458334 E3;=0.0064370
0, =0.1, 0, =0.152 E; =0.52505  E, =0.0132823

In case of co-current flows, /" F does not depend on X;
and for dissipation energy the following is obtained:

gr=2 ot =1 (1)
0

where /7 (i = 1,2) is the solution of Eq. (8) at bound-
ary conditions for co-current flows:

$=0,=0.152, f"3(0) =0.0908,

(19)
177(0) = 0.32765.

In Table 4, the dimensionless energy dissipation
E;(i=1,2) in the boundary layer is shown for the
case of gas-liquid opposite-current flows. It is com-
pared with values obtained for co-current flows
Er(i=1,2).

These results show that the energy dissipation
E¥(i=1,2) for gaseous phase in case of co-current
flows is lower than that in case of opposite-current
flows E;(i =1, 2), while in the second (liquid) phase
there is no significant change.

6. Conclusion

The obtained results allow determination of the vel-
ocity distribution in opposite-current flows in gas—
liquid boundary layers. They open the sociability for a
theoretical analysis of the heat and mass transfer kin-
etics under these conditions. The comparison between
opposite-current and co-current flows shows significant
differences in dissipation energy values in the gaseous
phase.
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